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1 INTRODUCTION AND MOTIVATION

1 Introduction and motivation

Fundamental theorems and constructions in Algebraic Topology often arise by examining mappings
of n-spheres into the spaces we want to study. By adopting a group theoretic lens, we are able
to define space-distinguishing invariants, including homotopy and (co)homology. Simultaneously,
we often define the basic theories of (co)homology by decomposing spaces into easily understood
pieces, and gluing them back up in some prescribed way. Despite choices being made, many
of these (co)homology theories are independent of the decomposition, and so do indeed define
isomorphic invariants. The study of knots draws inspiration from both of these perspectives, and
asks the question

“Given two embeddings of the circle into some 3-dimensional space, to what extent are the
embedded loops the same?”

The answer to this question has deep implications for 3-manifold theory. Any (suitably nice)
compact, oriented 3-manifold can be described as the glued union of two handlebodies, where the
gluing is specified uniquely by identifying knots on their surfaces. So there is certainly value in
establishing what it means for two knots to be the same, and how we can tell them apart given
this definition.
The classification of knots has been an active area of research for the last century and a half. In
1926, one of the first instances of substantive progress was made by James Waddell Alexander, who
introduced an integral Laurent polynomial arising from a certain fundamental group associated to a
knot [Ale28]. This polynomial proved to be invariant under isotopy, thus defining a knot invariant.
The Alexander polynomial remained the only known knot polynomial until the discovery of the
Jones polynomial [Jon85]. Since then, several other knot polynomials and invariants have emerged,
each with its own merit against the others. Though antiquated, the Alexander polynomial remains
an important knot invariant, which can be easily understood using only basic algebraic topology
constructions.
We offer a comprehensive guide to understanding the Alexander polynomial, first investigating
the geometric origins of the invariant via a cellular structure of the knot complement, and then
enhancing the method of calculation by some algebraic observations. We conclude the exposition
by highlighting some key properties of the Alexander polynomial.

1.1 A note on sources

There are plenty of wonderful resources for studying knots. The canonical guide is Rolfsen’s Knots
and Links [Rol90], in particular chapters 3 and 7. The referenced work is a revised version of the
original which came out in the 70s. I find the writing a bit outdated, and much prefer Lickorish’s
An Introduction to Knot Theory. The key concepts can be found in chapters 1, 5, 6 and 7, though
the rest of the textbook works to supplement the material in these sections and so is worth a
read. Besides these two textbooks, there are plenty of sets of notes online written by lecturers and
students alike that are easily accessible and relatively accurate. Two reliable sets are Kauffman’s
essay Knot Theory [Kau16] and Rasmussen’s lecture notes Knots, polynomials, and categorification
[Ras21]. For the sake of avoiding repetition, I will preface this essay by saying that its contents
implicitly cites all of the above as a source. The basic definitions, theorems and proofs all can be
found within these sources, and so I will not make further mention of their origins in the essay. I
will however explicitly cite sources whose perspectives I adopt for specific sections.
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2 KNOTS, LINKS, AND COMPLEMENTS

2 Knots, links, and complements

2.1 Basic definitions

Definition 2.1. A knot in R3 is an embedding of a loop K : S1 ↪→ R3. By embedding, we mean
either continuous, piecewise-linear or smooth, the three being interchangeable in the context of 3-
dimensional topology. A link in R3 is an embedding of finitely many disjoint loops L : ⊔nS

1 ↪→ R3.

In some respect I’ve already lied to you - by an embedding, I should really say a class of embeddings
that are isotopic to each other. This helps make sure we remember that things like the “infinity
loop” and the unknot, are really just the same, and that we can get from one to the other by a
smooth family of diffeomorphisms.

≡

Also, its not strictly true that we have to map into R3. In fact, thinking about embeddings into
other 3-dimensional spaces has lead to incredibly fruitful research and the invention of entirely
new branches of topology. Moreover, it is often more useful to think about knots embedded in
S3 and not R3, as will be seen. We can think of these two codomains interchangeably though
for dimension reasons. While we’re at it, it’s best to decide how we’d like to represent a knot in
two dimensions, so that it’s easy to tell when they are the same. The simplest way to do this is
to imagine a knot hovering in three dimensions, and then squash it straight down onto the floor.
Looking directly down at the knot gives us a 2-dimensional picture, while still giving us enough
information about how a point would move along the loop at each “crossing”.

Definition 2.2. Formally, we represent a knot in R2 by a knot diagram, which comprises

1. a smooth map φ : S1 ↪→ R2 such that φ′(θ) ̸= 0 for all θ ∈ S1, φ(S1) has no transverse
intersections, and φ(S1) has no triple points, along with

2. an ordering of each pair of intersection points.

For any knot K in R3 or S3, there is an open, dense subset of 2-planes such that projecting onto
one of them gives a knot diagram. So throwing a knot against any surface is likely to give a valid
knot diagram. Yay!

(a) (b) (c)

Figure 1: Examples of knot diagrams of (a) the unknot, (b) the (positive) trefoil, and (c) the
figure-8 knot.
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2.2 Link complements 3 THE FUNDAMENTAL GROUP OF A KNOT COMPLEMENT

2.2 Link complements

Knots and links in S3 really only take on any meaning when in the context of their ambient
spaces, so it is reasonable to try to characterise a knot K by its corresponding knot complement
MK := S3 \K.

Warning!. Remember when I lied to you? A knot is not just a single embedding, rather an
isotopy class of embeddings. We need to make sure that our definition of the knot complement is
compatible with this! The next lemma asserts exactly that this is the case.

Lemma 2.3. Knots K1 and K2 in S3 are isotopic if and only if their knot complements are
orientation-preserving diffeomorphic.

Proof. That orientation-preserving diffeomorphic knot complements give isotopic knots is a diffi-
cult theorem due to Gordon and Leucke, see [GL89]. The converse is not as hard to prove. Let
j1, j2 : S

1 ↪→ S3 be two isotopic knots embedded in S3. Then by definition of isotopy, there exists
a family of diffeomorphisms F : S1 × [0, 1] → S3 such that F0 = j1 and F1 = j2. But this isotopy
is enough to tell us exactly how to mould MK1 into MK2 . Define a time-dependent vector field
on F (S1 × [0, 1]) by pushing forward ∂

∂t
, vt := df

(
∂
∂t

)
. We can extend vt to a vector field on S3

smoothly, which has an associated global flow ft : S
3 → S3. But this map gives us exactly what

we need: the map f1 : MK0 7→ MK1 is an orientation-preserving diffeomorphism between MK0 and
MK1 .

3 The fundamental group of a knot complement

With the knot complement certifiably well-defined, let’s crack into possible invariants that arise
by examining it. The most basic invariant is its fundamental group, which we often refer to
as the knot group. It turns out that we can calculate it explicitly using what’s known as the
Dehn presentation or the Wirtinger presentation. Of course the methods give isomorphic groups,
but the Wirtinger presentation is usually cleaner since generally it will always spit out one more
relation than generator. The method is outlined below, and we offer a sketch of the proof that it
is isomorphic to the fundamental group of MK .

Definition 3.1. Let K be a knot in S3, and let D be a knot diagram for K. Equip D with an
(arbitrary) orientation. Then the Wirtinger presentation of MK is a presentation of the fundamen-
tal group π1(MK) with generators specified by the arcs of D, and relations given by conjugation
according crossings. Specifically, a relation in π1(MK) corresponds to a crossing by the following
rule:

γi

γj γj

γi

γk γk

γj = γkγiγ
−1
k γj = γ−1

k γiγk
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3 THE FUNDAMENTAL GROUP OF A KNOT COMPLEMENT

Before proving why this is in fact a presentation of π1(MK), let’s look at some examples first.

Example 3.2 (Wirtinger Presentation of a nontrivial presentation of the unknot). Consider the
following knot diagram of the unknot:

In the above presentation, there are two generators γ1 and γ2 corresponding to the left and right
arcs respectively, and the relations following the above rule are γ2 = γ1γ1γ

−1
1 and γ1 = γ2γ2γ

−1
2 .

These relations both say that γ1 = γ2, so that

π1(MK) = ⟨γ1, γ2 | γ1 = γ2⟩ = ⟨γ1⟩,

which is unsurprising since the unknot complement is diffeomorphic to a solid 2-torus.

Example 3.3 (Wirtinger Presentation of trefoil). Consider the following diagram of the (positive)
trefoil: There are three generators, γ1, γ2 and γ3, and three relations:

γ1

γ3

γ2

γ1 = γ−1
2 γ3γ2, γ2 = γ−1

3 γ1γ3, and γ3 = γ−1
1 γ2γ1.

Substituting the third relation into the first and second give the same relation, so that the knot
group is

π1(MK) = ⟨γ1, γ2 | γ2−1γ−1
1 γ−1

2 γ1γ2γ1⟩.
Example 3.4 (Wirtinger Presentation of the figure-8 knot). We’ll make use of our previous
presentation of the figure-8 knot from before:

γ1

γ2 γ3

γ4

We have four arcs, γ1, γ2, γ3 and γ4 which generate π1(MK). There are also four crossings, which
give rise to the following relations:

γ4 = γ2γ1γ
−1
2 , γ2 = γ4γ3γ

−1
4 , γ3 = γ−1

1 γ4γ1, and γ1 = γ−1
3 γ2γ3.

Since we have four generators and four relations, we can throw the last of them away and combine
the rest to give

π1(MK) = ⟨γ1, γ2 | γ2γ1γ−1
2 γ−1

1 γ2γ1γ
−1
2 γ1γ

−1
2 γ−1

1 ⟩.
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3 THE FUNDAMENTAL GROUP OF A KNOT COMPLEMENT

Proposition 3.5. The group defined in definition 3.1 is isomorphic to π1(MK).

Sketch of proof. The following sketch of a proof can be formalised via Van Kampen’s theorem,
constructing a 2-dimensional cell complex that is a deformation retract of the knot complement,
which has the Wirtinger presentation as its fundamental group. Geometrically though, it is intu-
itively clear where the generators and relations come from. The generators correspond to loops
based at infinity, each passing under an arc of the disconnected knot diagram. The relations come
from how we can homotope these loops across crossings. These are both represented in fig. 2.

γi

γjγk

γj = γkγiγ
−1
k

(a) (b)

Figure 2: The origin of (a) generators and (b) relations in the Wirtinger presentation

Now that we know how to calculate the knot group exactly, we may wish to explore other potential
avenues for knot invariants. The next logical step would be to see what we can discern from the
homology groups of the knot complement. Unfortunately they turn out to be much less informative
than homotopy groups. In fact, they are so less informative that they says absolutely nothing about
the knot in question.

Proposition 3.6. The first homology group of the knot complement is a terrible invariant.

Proof. Consider a closed tubular neighbourhood N(K) of K ⊂ S3, then S3 \K is homotopic to
S3 \N(K). In particular, H1(S

3 \K) ≃ H1(S
3 \N(K)), but S3 \N(K) is homotopic to the solid

2-torus T 2. Thus H1(S
3 \K) ≃ Z, so first homology captures no information about K.

From a group-theoretic standpoint, it is incredibly difficult to tell when two knots are isomorphic
by just observing their knot groups. Abelian groups are often easier to deal with, but our above
calculation suggests that we’ve hit a wall with homology. Or have we?
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4 THE ALEXANDER POLYNOMIAL

4 The Alexander polynomial

It turns out that digging a little deeper into how the homology groups and the knot group are
related gives rise to a new invariant, the Alexander polynomial. There are a variety of ways of
thinking about the Alexander polynomial, and the sources mentioned at the very beginning of
this essay exhibit a good chunk of them. The most natural way to define the polynomial is by
adopting a geometric perspective while exploiting some basic algebraic theory of covering spaces.
A good resource for this is chapter 2 of Rasmussen’s notes Knots, polynomials, and categorification
[Ras21]. The arguments of this section will follow this source closely, but the description of the
Fox calculus is more reminiscent of that that appears in chapter 11 of Lickorish’s An Introduction
to Knot Theory [Lic97]. Thus, we’ll begin by describing the Alexander polynomial via a geometric
perspective. We’ll then develop an algebraic interpretation of the Alexander polynomial, which
makes its calculation much more efficient.

4.1 A geometric perspective

Denote the abelianisation map by | · | : π1(MK) → H1(MK) ≃ Z⟨t⟩. Since H1(MK) does not tell
us much aboutK, its reasonable to liftMK to a covering spaceMK , and examine its first homology.
The idea is that perhaps we can reach a middle ground somewhere between MK and its universal
covering space, where both π1 and H1 are nontrivial. By the Galois theory of covering spaces,
any subgroup of π1(MK) corresponds to a covering space of MK . The most natural subgroup to
consider is ker | · |, so lets do that.

Definition 4.1 (Infinite cyclic cover). The covering space p : MK → MK of MK corresponding
to the subgroup ker | · | ≤ π1(MK) is called the infinite cyclic cover of MK , and has deck group
π1(MK)⧸ker | · | ≃ Z⟨t⟩.

We’d like to examine the action of a deck transformation acting on MK , but in order to do so we
need to understand the geometry of MK and thus of MK .

Proposition 4.2. The knot complement MK has the structure of a 3-dimensional handlebody.
The handle decomposition is described by a presentation of its fundamental group.

Note of proof. Suppose MK has fundamental group presentation

π1(MK) = ⟨γ1, ...γn | w1, ..., wm.⟩.

Then MK is homotopic to a cell complex with one 0-cell, n 1-cells corresponding to the generators,
and m 2-cells attached to the 1-skeleton via boundary maps specified by the relations. A good
visual of this is offered in [Car12], see Figures 19 and 20.

Example 4.3 (Infinite cyclic cover of trefoil knot). It is best to understand the cellular decom-
position of the knot complement and consequently the infinite cyclic cover via an example. It is
a quick check to show that the fundamental group of the trefoil is given by

π1(MK) = ⟨α, β | αβαβ−1α−1β−1⟩,

and so MK is homotopic to a 2-dimensional cell complex with one 0-cell p, two 1-cells α and β,
and one 2-cell w with attaching circle given by αβαβ−1α−1β−1.
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4.1 A geometric perspective 4 THE ALEXANDER POLYNOMIAL

With a cell-complex structure of (a deformation retract of) the knot complement, it is easy find a
cell-complex structure of MK . Choose a lift of p into MK , and denote this 0-cell by p. Then since
the action of the deck group (generated by t) is transitive, MK has 0-cells tn · p, n ∈ Z. Similarly,
we can lift α and β, and arrive at a 1-skeleton that for our example looks like

... ...
t · p t2 · p t3 · pt−1 · p p

t · α

t · β t2 · β

t2 · ααt−1 · α

βt−1 · β

Figure 3: 1-cell structure of MK for K the trefoil.

Note that the boundary map of the 2-cell w lifts to a closed curve in MK , describing the attaching
map of one of the 2-cells in MK . The rest of the 2-cells are obtained via deck transformations.

... ...
t · p t2 · p t3 · pt−1 · p p

t · α

t · β t2 · β

t2 · ααt−1 · α

βt−1 · β

Figure 4: Attaching circle of w in MK .

The goal is to use this cell complex structure to analyse H1(MK), in the hopes that it is nontrivial
and thus harbours some information about K. We’ll see that in fact H1(MK) has a nice algebraic
description as a module over the integral ring of Laurent polynomials, arising from the action of
the deck group. This is clear in our example of the trefoil, where the cellular chain complex of
MK is a module over R := Z[⟨t⟩] = Z[t±1]:

R R⊕R R

⟨w⟩ ⟨α, β⟩ ⟨p⟩
0 0

Definition 4.4 (Alexander module). Let K be a knot, MK be its knot complement, and MK be
the infinite cyclic cover. Then we define the Alexander module of K to be the group H1(MK),
seen as a module over Z[t±1], where t represents a generator of the deck group.

Switching coefficients from Z to Q allows us to do further algebraic manoeuvres, since our module
becomes one over a principal ideal domain. This allow us to represent the Alexander module as
a polynomial via the Structure theorem for finitely generated modules over a PID. From now on,
we unambiguously refer to the ring of Laurent polynomials over Q as R. We can decompose

H1(MK ,Q) = Rk ⊕R⧸p1 ⊕ · · · ⊕R⧸pl,

where p1, ..pl are some Laurent polynomials ∈ R. Picking apart the relationship between MK and
MK ’s chain complexes tells us that actually k = 0, so that H1(MK ,Q) is a torsion module. We
can thus define an invariant of K to be the product of all the polynomials p1...pl:

8



4.1 A geometric perspective 4 THE ALEXANDER POLYNOMIAL

Definition 4.5 (Alexander polynomial). Given a decomposition

H1(MK ,Q) = R⧸p1 ⊕ · · · ⊕R⧸pl,

we define the Alexander polynomial of K to be the Laurent polynomial

∆K(t) :=
l∏

i=1

pi.

Before we wrap up this section by finishing our example of the trefoil knot, let’s take a minute
to make a couple of important remarks. Immediately obvious is the fact that the Alexander
polynomial is not unique, insofar as it is only well-defined up to multiplication by a unit in R. So
we only speak of a representative of the Alexander polynomial, and we denote equivalence by ∼. It
is also worth pointing out that interpreting the Alexander polynomial geometrically can be rather
laborious, as you really need to understand the underlying structure of the knot complement. In
the case of the trefoil or other basic knots, it is easy to understand the action of the deck group
on lifts of cells, but for more complicated ones (or even links!) it becomes way trickier. We will
see soon that taking a more algebraic perspective allows us to mitigate this difficulty.
Finally, let us reflect on why exactly the Alexander polynomial is of use to us in comparison to the
fundamental group. We remarked in the previous section that, though the fundamental group is
a strong invariant, it is very difficult to use when needing to tell whether two knots are the same
or different. A group has an infinite number of presentations, and there is no easy way to go from
one to another. On the other hand, the Alexander polynomial is incredibly easy to identify, since
all we need to do to determine whether two knots are different is check that they do not differ by
some multiplicative unit in R.

Example 4.6 (Alexander polynomial of trefoil). Let’s finally calculate the Alexander polynomial
of the trefoil. We know that the cell chain complex of MK looks like

R R⊕R R

⟨w⟩ ⟨α, β⟩ ⟨p⟩
0 0

The differentials are also not difficult to deduce. From fig. 3 and fig. 4, it is clear that d1(α) =
d1(β) = t · p− p = (t− 1)p, so that d1 is represented by the matrix d1 = [t− 1 t− 1]. The map d2
is also fairly straightforward to calculate. Following the boundary of fig. 4, we have that

d2(w) = α + t · β + t2 · α− t2 · β − t · α− β,

= (α− β)(t2 − t+ 1).

Hence ker(d1) = ⟨(−1, 1)⟩, and Im(d2) = ⟨(t2 − t+ 1,−t2 + t− 1)⟩, so that

H1(MK) =
⟨(−1, 1)⟩⧸⟨(t2 − t+ 1,−t2 + t− 1)⟩ ≃

R⧸(t2 − t+ 1).

Thus the Alexander polynomial of the trefoil is

∆K(t) ∼ t2 − t+ 1.
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4.2 An algebraic observation

The Alexander module is not just a construction that exists for knot groups, but for any group
with a specified presentation and satisfying the condition that its abelianisation is Z.
Suppose we have some commutative unital ring R, and a module M over R.

Definition 4.7. We say that M is finitely presented if we have an exact sequence

0 → F
p−→ E

π−→ M → 0.

The exact sequence is known as a presentation of M .

This looks awfully familiar to the chain complex we described for the complement of the trefoil!
In fact, any chain complex of a knot complement has this form, and so we can translate our
geometric picture into an algebraic sequence. We’ll show how the presentation matrix of the
complex contains all the information we need to determine the Alexander polynomial.

Proposition 4.8. Given a knot K and a presentation of its knot group

π1(MK) = ⟨γ1, ..., γn | w1, ..., wm⟩,

the differential maps in the chain complex

Rm Rn R

⟨w1, ..., wm⟩ ⟨γ1, ..., γn⟩ ⟨p⟩
0 0d2 d1

can be calculated in a systematic way via Fox Calculus. Explicitly, if | · | : π1(MK) → H1(MK)
denotes the abelianisation map, then

1. the map d1 is given by d1(γi) = (|γi| − 1)p, and

2. the map d2 is given by the following free differential: for wi a relation,

d2(wi) =
∑
j

|ϕ(dγjwi)| · γj,

where ϕ : Z[F ] → Z[π1(Mk)] is the canonical map of rings where F is the free group on m
generators, F = ⟨w1, ..., wm⟩, and dγj acting on Z[F ] is the linear extension of the map on
F defined by

dγjγi = δij, dγjγ
−1
i = −δijγ

−1
i , and dγj(ww

′) = dγjw + wdγjw
′.

Proof. The map d1 takes any generator γi and maps it to its signed boundary, which is |γi|p− p.
This is clear from the geometric pictures we had before. The map d2 is trickier to understand, since
we’re now dealing with a map from Rm → Rn and so it has more moving parts. Geometrically,
for each γj the jith entry of the matrix representing this map essentially gives a signed count
of the segments of the boundary of the 2-cell described by wi, that overlap with an element of
Z[t] · γj.
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4.2 An algebraic observation 4 THE ALEXANDER POLYNOMIAL

Example 4.9 (Fox calculus for the trefoil). The workings of the Fox calculus is best learnt through
an example. Let’s return to the fundamental group of the trefoil, and see that it matches up with
our previous calculation. Recall that the knot group is given by

π1(MK) = ⟨α, β | αβαβ−1α−1β−1⟩.

Abelianising, we get that

|w| = |α|+ |β|+ |α| − |β| − |α| − |β| = 0 =⇒ |α| = |β| =: t,

so that |π1(MK)| ≃ Z⟨t⟩ as expected. We can then calculate the map d2 via Fox calculus, and we
have that

dαw =dα(αβαβ
−1α−1β−1)

=1 + |αβ|dα(α) + |αβαβ−1dα(α
−1)

=1 + t2 + t2(−1)t−1

=t2 − t+ 1

and similarly

dβw =dα(αβαβ
−1α−1β−1)

=|α|dβ(β) + |αβα|dβ(β−1) + |αβαβ−1α−1|dβ(β−1)

=t+ t3(−1)t−1 + t(−1)t−1

=− t2 + t− 1,

which is exactly what we calculated previously.

Definition 4.10 (Alexander matrix). The matrix obtained via Fox calculus for d2 is called the
Alexander matrix, which we denote by A.

Analysing this matrix via module representations, it turns out that the Alexander matrix is also
a presentation matrix for H1(MK). For a deeper investigation into this, see chapter 6 and p.117
of Lickorish [?]

Proposition 4.11. Let K be a knot with knot group

π1(MK) = ⟨γ1, ..., γn | w1, ..., wn−1⟩,

then ∆K(t) ∼ det(An), where An is the (n− 1)× (n− 1) submatrix of A obtained by deleting the
last row.

Proof. The Wirtinger presentation gives us a group presentation with n − 1 relations, and so we
have that our chain complex is of the form

Rn−1 Rn R0 0
A d1

In particular, we know that since K is a knot, |γi| = t for all i under the abelianisation map, and
so ker(d1) = {(γ1, ..., γn) |

∑
γi = 0}. It follows then that the projection map π : ker(d1) → Rn−1

is an isomorphism, so that

H1(MK) =
ker(d1)⧸Im(d2)

≃ Rn−1

⧸Im(π ◦ A) ≃
Rn−1

⧸Am
,

so that ∆K(t) ∼ det(Am).
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5 Properties of the Alexander polynomial

Having defined the Alexander polynomial, we will conclude this exposition by examining its prop-
erties, along with some of its advantages and disadvantages in comparison to other invariants.
Perhaps the most convenient property of the Alexander polynomial is that it satisfies what is
known as the Conway skein relation. Given a knot K, it is possible to unknot it by performing a
sequence of crossing changes. The possible changes we can make to a crossing are

K− K+K0

The Conway Skein relation says that

∆( )−∆( ) =
(
t1/2 − t−1/2

)
∆( )

So that we can compute the Alexander polynomial of a knot starting with the Alexander polyno-
mial of the unknot. The proof of this relies on understanding ∆K(t) from the perspective of Seifert
surfaces ofK. For an in depth discussion of this, see chapter 6 of Lickorish [Lic97]. Thinking about
the Alexander polynomial through this lens also allows us to define the symmetrised Alexander
polynomial, which confirms that ∆K(t) is not just a rational Laurent polynomial but an integral
one, is (as the name suggests) symmetric, and satisfies ∆K(1) = 1. The Alexander polynomial is
also easily generalisable - it can be extended from knots to links by a method analogous to the
above constructions.

Though ∆K(t) is a practical tool, it also has significant drawbacks. Of course, the Alexander
polynomial is an easily computable and fundamental invariant of a knot, as it arises simply from
consideration of the knot group. However, due to this dependence, it inherits negative properties
of π1(MK) that we wish to avoid. That is to say, it fails to capture a lot of characteristics of K
we may wish to identify. For example, perhaps we’re given the following two knots, the negative
trefoil and the positive trefoil:

(a) (b)

Figure 5: Knot diagram of (a) the negative trefoil and (b) the positive trefoil

Notice the difference in the crossings between the two. Suppose we’d like to distinguish between
them. These two knots are not the same, but π1(MK) fails to recognise that. In fact, for any knot
K, its knot group is isomorphic to the knot group of its mirror, the knot described by reflecting
K’s knot diagram. This follows from since any knot is orientation reversing homeomorphic to its
mirror, which induces an isomorphism on homotopy. Hence, for any knot K, ∆K(t) ∼ ∆K(t), so
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plicable areas. Seifert proved that the degree of the Alexander polynomial gives a lower bound
for the minimal genus of a Seifert surface, the exact values of which is an NP-problem [AHT02].
For a proof of this bound, see [Ras21][Thm. 2.6.7]. Alexander polynomials also appear in knot
Floer homology, as well as Seiberg-Witten theory. For further reading, see Ozsváth and Szábo’s
An introduction to Heegaard Floer Homology [OS06], and Rasmussen’s Floer homology and knot
complements [Ras03].
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